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Abstract
In this work we consider some inverse problems with respect to domain for the
Laplace operator. The considered problems are reduced to the variational
formulation. The equivalency of these problems is obtained under some
conditions. The formula is obtained for the eigenvalue in the optimal domain.
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1. Introduction

The study of shape optimization problems is a very wide field of optimization theory. It
begins with classical problems, as the isoperimetric and the Newton problem of the best
aerodynamical shape show. Recent results have also been obtained in the last three decades.

This kind of problem for the eigenvalues of an elliptic operator is an intensively studied
field that has strong relations with several applications such as, for instance, the stability of
vibrating bodies, the propagation of waves in composite media, and the thermic insulation
of conductors. Some characteristics of these systems are described by the eigenvalues of
the corresponding operators. For instance, the eigenvalues of the Schrödinger operator
Lu(x) = −�u(x) + q(x)u(x) are energy levels of the quantum particle in the external
force field [1], of the operators Lu(x) = −�u(x) and Lu(x) = �2u(x)—eigenfrequency of
the vibrating membrane and plate, correspondingly [2]. Investigation of such problems is also
important in studying qualitative properties of the eigenvalues.

The fascinating feature is that the objects under investigation are shapes, i.e. domains
of Rm, instead of functions, as usually occurs in the problems of variational calculus. This
constraint often produces additional difficulties that lead to a lack of existence of a solution
and to the introduction of suitable relaxed formulation of the problem. However, in some
cases an optimal solution exists, due to the special form of the cost functional and geometrical
restrictions on the class of admissible domains [3]. Another difficulty is related mainly to
the mathematical definition of the variation of the domain characterized by the variation of
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its boundary. Introduced by J Cea and developed by J Sokolowski, J-P Zolesio and other
researchers, the methods of variation of the domain using vector fields allowed one to solve
some of these problems [4]. But these techniques encounter some difficulties from theoretical
and numerical points of view [5]. They often require an initialization close to the optimum
and in that can prove to be inapt to identify a non-intuitive optimal solution; the calculation
of the gradient is always delicate, seldom exact and generally expensive [6]. Moreover, the
following problems arise.

To connect the set of the admissible domains to the vector fields; to put a high regularity
of the initial data; to solve the conditional optimization problem by this method, it is usually
necessary, to reduce it to a non-conditional problem (for example, by the Lagrange multipliers
technique).

The new approach introduced in [7, 8] tends to avoid these difficulties. It consists of
representing a convex domain (or a pair of domains) by its support function . It is shown that
the set of such domains forms a structure of linear space and one can even define a scalar
product in it.

The variation of the domain then is naturally replaced by the variation of the corresponding
support function. For any convex-bounded domain its support function is continuous convex
and positive homogeneous. Also it is known that for each continuous convex positive-
homogeneous function there exists a convex bounded set, such that this function is a support
function for this set. The set coincides with the sub-differential of this function at the origin [9].
This single-valued correspondence between domains and convex and positive homogeneous
functions allows us to express the variation of the domain by the variation of the corresponding
support function.

In the process of numerical simulation after each iteration we not only get a set of boundary
points, but also a support function. The domain is reconstructed as a sub-differential of its
support function in the point 0. It allows one to avoid the necessity to control: Does the set of
boundary points form a shape of domain or not?

Based on this technique we proved the differentiability of the eigenvalue of the elliptic
operator with respect to domain and got a formula for its first variation [10]. The results
obtained in this work are mainly based on these formulae.

In this work we consider some inverse problems relatively domain. These problems are
reduced to the shape optimization problems for the functionals related to the eigenvalues of
the elliptic operators. Here we show that under some conditions these problems are equivalent
and get a formula for the eigenvalue in the optimal domain. Note that the obtained formulae
do not include an eigenfunction. This fact makes them interesting both from practical and
theoretical points of view.

For the sake of simplicity we consider only a Laplace operator, but the results may be
extended for other elliptic operators.

2. Main results

Consider the problem

−�u = λu, x ∈ D, (1)

u(x) = 0, x ∈ SD, (2)

where � is the Laplace operator, D ⊂ Rm—a convex bounded domain, SD—its boundary and
∇ = (

∂
∂x1

, . . . , ∂
∂xm

)
.
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It is known [1] that in the considered case the eigenfunctions (eigenvibrations of the
membrane) uj , j = 1, 2, . . . of the problem (1), (2) belong to the class C2(D) ∩ C1(D),
eigenvalues (eigenfrequencies) are positive and may be numbered as λ1 � λ2 � · · · , where
each λk is counted with its multiplicity.

Let D ⊂ Rm be a bounded convex domain with a smooth boundary SD. We denote the
set of all such domains by K.

For the sake of simplicity we denote by u(x) the first normalized eigenfunction of the
problem (1), (2) corresponding to the first eigenvalue λ1.

First we consider the problem: given ϕ(x) ∈ C1(Rm), define D ∈ K such that the relation

|∇u(x)|2
λ1

= ϕ(x), x ∈ SD (3)

is valid for the first eigenvalue and the corresponding eigenfunction of the problem (1), (2).
We call this I problem.
Parallely let us consider the following variational problem:

−�u = λu, x ∈ D, (4)

u(x) = 0, x ∈ SD, (5)

λ1(D) → min, (6)

under the condition∫
D

f (x) dx = 1, (7)

where f (x) is given in the Rm function.
This problem we call V problem.
Here we give a theorem that plays an important role in the investigation of these problems.

Theorem 1. For the eigenvalue of the problem (1), (2) in the domain D the following formula
is valid:

λ1 = 1

2

∫
SD

|∇u(x)|2PD(n(x)) ds, (8)

where PD(x) = max
l∈D

(l, x), x ∈ Rm is a support function of the domain D,n(x) is an outward

normal to SD in the point x.
It needs to be noted that the formula (8) is true for all eigenvalues of the Schrödinger

operator when the potential q(x) is −2-order homogeneous, i.e.

q(tx) = 1

t2
q(x).

This theorem shows that boundary values of the function |∇uj (x)| uniquely define
eigenfunction λj . Formula (8) and this fact may be attractive in the spectral theory of
the operators.

As noted above, solution of the inverse problem relatively domain meets some serious
difficulties. One of the methods to their solution is reducing of such problems to the variational
ones (shape optimization problems). The theorem below puts a relation between the solutions
of the I and V problems.

Theorem 2. Let ϕ(x) be an α-order homogeneous function, i.e.

ϕ(tx) = tαϕ(x), (9)

3
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f (x) = Cϕ(x), where C = α+m
2 . Then the solution of the V problem will be the solution of

the I problem at the same time.
As an example to the functions satisfying the condition of the theorem take

ϕ(x) = xα
1 �

(
x2

x1
,
x3

x1
, . . . ,

xm

x1

)
, (10)

where � is any differentiable function.
Then the function

f (x) = m + α

2
· ϕ(x)

satisfies the condition of the theorem.
Now suppose that ϕ(x) ≡ 1. In this case α = 0 and

f (x) = m

2
.

For this case condition (7) takes the form

mes D = 2

m
.

Note that this condition occurs during the formulation of some practical problems.
To solve the V problem one can introduce a Lagrange multiplier and reduce the problem

to the non-conditional case. In this case the solution of the considered problem relates the
following shape optimization problem:

Given f (x) ∈ C1(Rm), define D ∈ K such that

J (D) = λ1(D) +
∫

D

f (x) dx → min. (11)

An important problem is the estimation of the mechanical characteristics of the system
in the optimal domain. It may have significant applications to the solution of some practical
problems. The next theorem allows one to calculate the eigenfrequency of the membrane
during across vibrations. The attraction of the obtained formula is that it does not contain an
eigenfunction.

Theorem 3. If the domain D ∈ K is a solution of the problem (1), (2), (11) then

λ1(D) = 1

2

∫
SD

f (x)PD(n(x)) ds. (12)

Let us consider some particular cases. Suppose that f (x) = 1, x ∈ Rm. In this case
problem (11) takes the form

J (D) = λ1(D) + mes D → min . (13)

From (12) we obtain

λ1(D) = 1

2

∫
SD

PD(n(x)) ds.

As is known ([7])in the two-dimensional case,

1

2

∫
SD

PD(n(x)) ds = mes D.

Thus

λ1(D) = mes D.

4
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This formula shows that in the two-dimensional case the eigenvalue (eigenfrequency)
corresponding to the domain, that gives a minimum to the functional (11) is equal to the area
of this domain (domain of the membrane).

In the one-dimensional case problem (1), (2), (11) turns to

u
′′ = λu, x ∈ (a, b),

u(a) = u(b) = 0,

λ1(a, b) +
∫ b

a

f (x) dx → min .

For this problem as one may obtain from (12)

λ1(a, b) = 1
2 [f (b)b − f (a)a].

Other cases may also be considered when the inverse problem (1)–(3) is reduced to the
variational formulation (4)–(7) with various functionals. To investigate the problem (4)–(7)
one may use the apparatus offered in [1].

3. Proof of theorem 1

It is known that [11] for a fixed domain D the first eigenvalue of the problem (1), (2) is
calculated by the formula

λ1(D) = inf
u

I (u,D),

where

I (u,D) =
∫
D

|∇u(x)|2 dx∫
D

u2(x) dx
, |∇u(x)|2 =

m∑
i=1

(
∂u

∂xi

)2

and inf is taken over all functions u ∈ C2(D) ∩ C1(D̄), being equal to zero on SD .
As we see, this formula defines λ1 as a functional of D.
In [7, 10] it is proved that the first eigenvalue of the problem (1), (2) is differentiable with

respect to D on K and for its first variation the formula

δλ1(D) = −
∫

SD

|∇u|2δPD(n(x)) ds (14)

is valid.
Let us take a positive parameter t and define D = D(t), λ1(t) = λ1(D(t)). Then as one

may obtain from (14)

λ1(t + �t) − λ1(t) = λ1(D(t + �t)) − λ1(D(t))

=
∫

S(t)

|∇u1(x)|2[PD(t+�t)(n(x)) − PD(t)(n(x))] ds + o(�t).

From this dividing by �t we obtain

λ
′
1(t) = −

∫
SD(t)

|∇u1(x)|2P ′
D(t)(n(x)) ds, (15)

where

P ′
D(t)(x) = d

dt
PD(t)(x).
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Now let D0 ∈ K,D(t) = tD0, t > 0. Then

−�u(x) = λ1(D0)u(x), x ∈ D0.

One can write this equation in the following equivalent form

− 1

t2
�(x

t )
u

(x

t

)
= λ1(D0)u

t2

(x

t

)
, x ∈ D(t). (16)

From this it is clear that the function ũ(x) = u
(

x
t

)
, x ∈ D(t) would be an eigenfunction of

the problem (1), (2) by D = D(t).

Really, as for the function

ũ(x) = u
(x

t

)
,

the relation

�ũ(x) = 1

t2
�u

(x

t

)
, x ∈ D(t)

is true, from (14) we obtain

−�ũ(x) = λ1(D0)

t2
u(x).

It shows that ũ(x) is an eigenfunction of the problem (1), (2) corresponding to the
eigenvalue λ1(t) = λ1(D0)

t2 . Considering this in (15) we have

−2
λ1(D0)

t3
= − 1

t2

∫
SD

∣∣∣∇u
(x

t

)∣∣∣2
PD0(n(x)) ds.

Taking t = 1 we obtain (8).
The theorem is proved.

4. Proof of theorem 2

To prove the theorem let us introduce Lagrange’s function

L(D,µ) = λ1(D) + µ ·
∫

D

f (x) dx. (17)

Denote

G(D) ≡
∫

D

f (x) dx.

In [7], it is shown that this functional is differentiable on K and

δG(D) =
∫

SD

f (x)δPD(n(x)) ds. (18)

Considering this and (14) in (17) we obtain

δL(D) =
∫

SD

[µf (x) − |∇u|2]δPD(n(x)) ds. (19)

If D is a solution of the problem (4)–(7) then as follows from Lagrange’s theory the
equality

µ · f (x) − |∇u|2 = 0, x ∈ SD (20)

is satisfied.
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In spite of this relation being obtained under the convexity condition on D, one may show
that it is true for non-convex domains too.

Multiplying (20) by PD(x) and integrating on SD we obtain∫
SD

[µ · f (x) − |∇u|2]PD(n(x)) ds = 0.

From this it is easy to obtain
1

2
µ ·

∫
SD

f (x)PD(n(x)) ds = 1

2

∫
SD

|∇u|2PD(n(x)) ds.

The right-hand side of this equality is equal to the first eigenvalue of the problem (1)–(2)
(see theorem 1).

Considering this we obtain

µ ·
∫

SD

f (x)PD(n(x)) ds = 2λ1.

Since the first eigenvalue of the problem (1), (2) is not equal to zero,∫
SD

f (x)PD(n(x)) ds �= 0.

So we obtain for Lagrange’s multiplier,

µ = 2λ1∫
SD

f (x)PD(n(x)) ds
. (21)

This formula allows one to calculate the Lagrange multiplier. Note that here D is an
optimal domain and (21) does not include an eigenfunction.

Putting (21) into (20) we obtain
2λ1 · f (x)∫

SD
f (x)PD(n(x)) ds

= |∇u|2. (22)

From this we finally obtain

|∇u|2
λ1

= 2f (x)∫
SD

f (x)PD(n(x)) ds
. (23)

The proof will be finished if we show the validity of the following equality:
2f (x)∫

SD
f (x)PD(n(x)) ds

= ϕ(x), x ∈ SD. (24)

Denote

M =
∫

SD

f (x)PD(n(x)) ds.

As is known [9] for the support function PD(x),

PD(n(x)) = (n(x), x), x ∈ Rm (25)

is true.
Using this and the Gauss–Ostrogradskii formula we can write

M =
∫

SD

f (x)(n(x), x) ds =
m∑

i=1

∫
D

∂

∂xi

(f (x), x) dx

=
m∑

i=1

∫
D

(
f (x) +

∂f (x)

∂xi

xi

)
dx

=
∫

D

[m · f (x) + (∇f, x)] dx.

7
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As follows from condition (7),

M = m +
∫

D

(∇f, x) dx. (26)

Differentiating (9) with respect to t and then taking t = 1, it is easy to check that for the
functions ϕ(x) is true

(∇ϕ(x), x) = αϕ(x).

Considering this and condition (7) one may obtain

M = m + C

∫
D

(∇ϕ(x), x) dx = m + α.

Thus
2f (x)

M
= 2Cϕ(x)

m + α
.

As C = m+α
2 , from this we obtain (24).

The theorem is proved.

5. Proof of theorem 3

Considering (14) and (18) we can write

δJ (D) = δλ1(D) + δ

∫
D

f (x) dx =
∫

SD

[f (x) − |∇u|2]δPD(n(x)) ds. (27)

Now, let D ∈ K be a solution of the problem (1), (2), (11). Then according to the
optimality condition,

− |∇u(x)|2 + f (x) = 0, x ∈ SD. (28)

Multiplying (28) by PD(n(x)) and integrating over SD we obtain

−1

2

∫
SD

|∇u(x)|2PD(n(x)) ds +
1

2

∫
SD

f (x)PD(n(x)) ds = 0.

Considering here (8) we obtain the statement of the theorem.
The theorem is proved.
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